
2022 James S. Rickards Fall Invitational Calculus Team Round

QUESTION 1

Given:

f(x) = (x4 + 2x2 + 1)4

g(x) = sin(x4 + 2x2 + 1) + cos(x4 + 2x2 + 1)

Let:

A = f ′(2)

B = the number of terms in f(x)

C = the maximum value of g(x)

Find
√
0.00001AB + C2.
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QUESTION 2

Let:

A = lim
x→0

ln(x4 + 2x2 + 1)− ln(x+ 1)

x

B = lim
x→0

ln(x4 + 2x2 + 1)− ln(x2 + 1)

x2

C = lim
x→0

sin
(
x4 + 2x2 + 1

)
− sin 1

cos (x4 + 2x2 + 1)− cos 1

The value A+B + C can be expressed as cot(θ) for some 0 < θ < π. Compute θ.
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QUESTION 3

Let:

f(x) = 2x
4+2x2+1 + 4x

4+2x2+1 + 8x
4+2x2+1

g(x) = sin(x4 + 3x2 + 2x)

A = f ′′(0)

B = g′(0)

Find
A

ln 2
+ 2B.
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QUESTION 4

Let:

A = the maximum area of a rectangle with perimeter 36

B = the maximum volume of a cone with circumradius 3

C = the maximum volume of a sphere that can be inscribed in a rectangular prism with volume 36

D = the maximum area of a triangle that can be inscribed in a rectangle with perimeter 36

Find A+ 3B + C − 2D.
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QUESTION 5

A particle X travels along the x-axis and another particular Y travels along the y-axis. The x-coordinate of particle X
is dictated by f(t) = 3 cos t and the y-coordinate of particle Y is dictated by g(t) = 4 sin t. Let M be the midpoint of the
positions of X and Y .

A = the maximum distance between X and Y

B = the maximum distance between M and the origin

C = the rate of change of the distance between X and Y at t = 0

D = the rate of change of the distance between M and the origin at t = 0

Compute A+B + C − 2D.
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QUESTION 6

For an infinitely differentiable function f(x), let f@(x) be defined as∫ x

0

∫ y

0

(f(z) + 3f ′(z) + 3f ′′(z) + f ′′′(z))ezdzdy

Let g(x) = x4 + 2x2 + 1. Compute g@(0).
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QUESTION 7

Let pn(x) denote the non-constant polynomial with leading coefficient of 1 and minimal degree, such that pn(i) = p′n(i)
for all i = 1, 2, . . . , n. For example p1(x) = x because p1(1) = p′1(1) = 1.

A = p2(3)− p′2(3)

B = p3(4)− p′3(4)

C = p4(5)− p′4(5)

D = p5(6)− p′5(6)

Compute A+B + C +D.
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QUESTION 8

f and g are smooth functions on R satisfying the following:

x f(x) g(x) f ′(x) g′(x)

1 4 3 1 2
2 5 3 1 5
3 2 1 2 0
4 1 2 2 4
5 2 0 3 1

Also, let fn(x) = f(f(· · · f(x) · · · )), where there are n applications of f being applied. Let:

A = the derivative of f(g(f(x))) at x = 3.

B = the derivative of f(x) + f(f(x)) + f(f(f(x))) at x = 1.

C = the derivative of
f(x)

61
+

f2(x)

62
+

f3(x)

63
+ · · · at x = 1 (assume convergence).

D = the derivative of
g(x)

61
+

g2(x)

62
+

g3(x)

63
+ · · · at x = 1 (assume convergence).

Compute
A+B

D − C
.
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QUESTION 9

Let:

A = lim
x→∞

(1 + x)
1
x

B = lim
x→0

(1 + x)
1
x

C = maximum of f(x) = x
1
x−2e for x > 0

D = maximum of g(x) = x
1
x2 for x > 0

Compute ln(A) ln(B) + ln(C) ln(D).
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QUESTION 10

For positive integers a, b, c, d, let f(a, b, c, d) = 1 if the limit

lim
x→0

sina(x)(1− sin(x))b

cosc(x)(1− cos(x))d

is well-defined and non-zero, and f(a, b, c, d) = 0 otherwise. Compute

100∑
a=1

100∑
b=1

100∑
c=1

100∑
d=1

f(a, b, c, d).
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QUESTION 11

Let:

A = 1 if the following series converges or 2 if it diverges:

∞∑
n=1

n10

n12 − 100

B = 3 if the following series converges or 4 if it diverges:

∞∑
n=1

n2

√
n6 + 2n2 + 1

C = 5 if the following series converges or 6 if it diverges:

∞∑
n=1

ln(n4 + 2n2 + 1)

n

D = 7 if the following series converges or 8 if it diverges:

∞∑
n=1

sin(n)

n2

Find A+B + C +D.
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QUESTION 12

Unscramble the following words having something to do with math. Your answer to each part will be the unscrambled
word:

A = ALERTING (there are two mathematical words possible, one is better suited for calculus, choose that one)

B = ALLPEARL

C = BOHRSUM

D = EDISONMIN

The first letters of the answers to the 4 parts rearrange to form a common 4-letter word. Find this word (write your
answer in all uppercase letters).
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QUESTION 13

A triangle has three angles that are all prime numbers, and the longest side length is 10.

A = the perimeter of this triangle, rounded to the nearest integer

B = the area of this triangle, rounded to the nearest tenth

Compute AB.

13



2022 James S. Rickards Fall Invitational Calculus Team Round

QUESTION 14

For a polynomial p(x), define p(x)′ to be p(x) + p′(x). Let f(x) = x4 + 2x2 + 1.

A = f(x)′′ evaluated at x = 1

B =

∫ 1

0

f(x)dx

C =

∫ 1

0

f(x)′dx

D =

∫ 1

0

f(x)′exdx

Compute A−B + C +D.
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