Name: ______ School: ____

- 1. _____ Evaluate 1 + 2.
- 2. _____ Find the number of integral (positive or negative) divisors of 412.
- 3. _____The sum of the roots of $x^2 200x + 11 = x$ is:
- 4. $2012^2 2011^2 =$
- 5. _____The area of the conic $x^2 + 4x + y^2 = 4$ is:
- 6. _____If x + 2y = 7, and x + hy = 11, and y = 2, then h =
- 7. _____In regular hexagon ABCDEF, AB = 1. The area of ABCDEF is:
- 8. ____1+2+3+...+80=
- 9. ____x + 3 = 2, then x is:
- 10. $11 \times 74598 = 10$
- 11. _____If $\frac{x}{y} + \frac{y}{x} = 2$, then $\frac{x}{y} =$
- 12. _____ $x^2 2x 3 = 0$, the largest possible x is:
- 13. _____If two days before yesterday was the day after Saturday, tomorrow is:
- 14. _____If 3x + 2y = 1, then the y-coordinate of the y-intercept is:
- 15. _____If |3x| = 5, then x^2 is:
- 16. _____The volume of a cylinder with radius 3 and height 5 is:
- 17. _____If three Hunds are an Aufbau, and four Aufbau are in a Pauli, then the number of Hunds in thirty Paulis is:
- 18. _____n cuts are made in a plane, separating it into 7 regions. The minimum n is:
- 19. _____In a cube the sum of the nonzero volume and the surface area equals the side length; the side length is:
- 20. _____The constant term in the expansion of $(2x + \frac{1}{3x})^4$ is:
- 21. _____In right triangle ABC, AB = BC = 2, then AC =
- 22. ____The smallest possible area of a right triangle with side lengths 3 and 4 is:
- 23. Evaluate $\sum_{n=1}^{\infty} \frac{3^n + 2^n}{(3+2)^n}$
- 24. $(\sqrt{5})^4 4(\sqrt{5})^3 \left(\frac{\sqrt{5}}{2}\right) + 6(\sqrt{5})^2 \left(\frac{\sqrt{5}}{2}\right)^2 4(\sqrt{5}) \left(\frac{\sqrt{5}}{2}\right)^3 + \left(\frac{\sqrt{5}}{2}\right)^4 =$
- 25. ____The volume of a cone with height 4 and radius 2 is:
- 26. ____The number of permutations of "FUNKFUNKY" is:
- 27. _____If a number x is such that $\sqrt[2011]{x} = -1$ and x is real, then x = -1
- 28. _____If fifty men can make fifty sandwiches in fifty hours, the number of sandwiches one man can make in one hour is:
- 29. ____The area of the triangle with vertices (-1,5),(-3,2), and (2,1) is:

- 30. $\sqrt{4489} =$
- 31. ____(53)(117)=
- 32. $\sum_{n=1}^{\infty} \frac{1}{5^n} =$
- 33. $-----\begin{pmatrix} 2012\\2011 \end{pmatrix} =$
- 34. _____The area of the region bound by y = x, y = 2x, y = 0 and y = 3 is:
- 35. ____The 20^{th} smallest prime number is:
- 36. _____The y coordinate of the center of $\frac{(y-123452)^2}{13456} + \frac{(x-124985)^2}{98498} = 73294$ is:
- 37. _____A + B = 7, AB = -2, then $A^2B + B^2A =$
- 38. $2^4 + 4^2 =$
- $39. \quad 1.01+4.02+9.03+16.04+25.05+36.06+49.07+...+100.1$
- 40. _____The greatest integer less than $e + \pi + \phi + 2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2} + \dots}}} + \frac{1000000001}{1000000000} + 2011 + e^{\pi i}$